If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2-6=17p
We move all terms to the left:
10p^2-6-(17p)=0
a = 10; b = -17; c = -6;
Δ = b2-4ac
Δ = -172-4·10·(-6)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-23}{2*10}=\frac{-6}{20} =-3/10 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+23}{2*10}=\frac{40}{20} =2 $
| -2(t-7)-(t+5)=8 | | 0.06(x)=0.72 | | L=7r-20 | | 2r^2+3r-4=0 | | n^2+24=11n | | 13=3/8j-7 | | 13/5x−14=1/2(3x−8 | | -3-4=w+3 | | (0.03x)=x-1023.01 | | 8x+18=16x-6 | | 27-3x=-3+7 | | 4+2f=14 | | 64=h+3064=h+30.h=h= | | 8(x-3)=14=2(4x+5) | | 786=10h-126 | | 4m^2+1m-10=0 | | 21x^2+9x=14x | | (3x-15)+2x=18+4x+25 | | 40=0.4(10)^x | | 8+2/3r=18 | | x2+2x-44=4 | | x2-10x+16=-5 | | -16t^2+20t+12=0 | | 27-3x=-3x+7x | | z/17-226=-212 | | x⁴-2x³+5x²=0 | | 2(x-1)+4x=10(x-3) | | -19-11f=-20+20-12f | | -542=13n+95 | | 35-9d=-46 | | 14m-6=-5m+19m-6 | | 2=2t-8 |